Diketahui ada kuantitas f:=∑ri1,…,in=1Mi1⋯inxi1⋯xinf:=∑ri1,…,in=1Mi1⋯inxi1⋯xin, sehingga
∂f∂xi=r∑i1,…,inn∑k=1Mi1⋯inxi1⋯xik−1δiikxik+1⋯xin,∂f∂xi=r∑i1,…,inn∑k=1Mi1⋯inxi1⋯xik−1δiikxik+1⋯xin,
∂f∂xi=n∑k=1r∑i1,…,ik−1,ik+1,…,in=1Mi1⋯ik−1iik+1⋯inxi1⋯xik−1xik+1⋯xin,∂f∂xi=n∑k=1r∑i1,…,ik−1,ik+1,…,in=1Mi1⋯ik−1iik+1⋯inxi1⋯xik−1xik+1⋯xin,
r∑i=1xi∂f∂xi=n∑k=1r∑i,i1,…,ik−1,ik+1,…,in=1Mi1⋯ik−1iik+1⋯inxi1⋯xik−1xixik+1⋯xin.
Karena Mi1⋯ik−1iik+1⋯inxi=∑rik=1δiikMi1⋯ik−1ikik+1⋯inxik, maka
r∑i=1xi∂f∂xi=n∑k=1r∑i,i1,…,in=1Mi1⋯inxi1⋯xinδiik.
Karena ∑nk=1∑ri=1δiik=n, maka
r∑i=1xi∂f∂xi=nf.
∂f∂xi=r∑i1,…,inn∑k=1Mi1⋯inxi1⋯xik−1δiikxik+1⋯xin,∂f∂xi=r∑i1,…,inn∑k=1Mi1⋯inxi1⋯xik−1δiikxik+1⋯xin,
∂f∂xi=n∑k=1r∑i1,…,ik−1,ik+1,…,in=1Mi1⋯ik−1iik+1⋯inxi1⋯xik−1xik+1⋯xin,∂f∂xi=n∑k=1r∑i1,…,ik−1,ik+1,…,in=1Mi1⋯ik−1iik+1⋯inxi1⋯xik−1xik+1⋯xin,
r∑i=1xi∂f∂xi=n∑k=1r∑i,i1,…,ik−1,ik+1,…,in=1Mi1⋯ik−1iik+1⋯inxi1⋯xik−1xixik+1⋯xin.
Karena Mi1⋯ik−1iik+1⋯inxi=∑rik=1δiikMi1⋯ik−1ikik+1⋯inxik, maka
r∑i=1xi∂f∂xi=n∑k=1r∑i,i1,…,in=1Mi1⋯inxi1⋯xinδiik.
Karena ∑nk=1∑ri=1δiik=n, maka
r∑i=1xi∂f∂xi=nf.
Komentar
Posting Komentar