Langsung ke konten utama

Turunan Vektor Basis Satuan Azimutal terhadap Koordinat Azimutal

\[ \partial\hat{\phi}/\partial\phi = (\partial/\partial\phi)(\vec{e}_\phi/|\vec{e}_\phi|). \]
\[ \vec{e}_\phi = \partial\vec{r}/\partial\phi. \]
\[ \vec{r} = \hat{x}r\sin\theta\cos\phi + \hat{y}r\sin\theta\sin\phi + \hat{z}r\cos\theta. \]
\[ \vec{e}_\phi = -\hat{x}r\sin\theta\sin\phi + \hat{y}r\sin\theta\cos\phi. \]
\[ |\vec{e}_\phi| = r\sin\theta. \]
\[ \hat{\phi} = \vec{e}_\phi/|\vec{e}_\phi| = -\hat{x}\sin\phi + \hat{y}\cos\phi. \]
\[ \partial\hat{\phi}/\partial\phi = -(\hat{x}\cos\phi + \hat{y}\sin\phi). \]
\[ \hat{r} = \hat{x}\sin\theta\cos\phi + \hat{y}\sin\theta\sin\phi + \hat{z}\cos\theta. \]
\[ \hat{\theta} =  \vec{e}_\theta/|\vec{e}_\theta|. \]
\[ \vec{e}_\theta = \partial\vec{r}/\partial\theta = \hat{x}r\cos\theta\cos\phi + \hat{y}r\cos\theta\sin\phi - \hat{z}r\sin\theta. \]
\[ |\vec{e}_\theta| = r. \]
\[ \hat{\theta} = \hat{x}\cos\theta\cos\phi + \hat{y}\cos\theta\sin\phi - \hat{z}\sin\theta. \]
\[ \begin{pmatrix}\hat{r} \\ \hat{\theta} \\ \hat{\phi}\end{pmatrix} = \begin{pmatrix}\sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0\end{pmatrix} \begin{pmatrix}\hat{x} \\ \hat{y} \\ \hat{z}\end{pmatrix}. \]
\[ \Delta = \begin{vmatrix}\sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0\end{vmatrix} = 1. \]
\[ \hat{x} = \frac{1}{\Delta}\begin{vmatrix}\hat{r} & \sin\theta\sin\phi & \cos\theta \\ \hat{\theta} & \cos\theta\sin\phi & -\sin\theta \\ \hat{\phi} & \cos\phi & 0\end{vmatrix} = \hat{r}\sin\theta\cos\phi + \hat{\theta}\cos\theta\cos\phi - \hat{\phi}\sin\phi. \]
\[ \hat{y} = \frac{1}{\Delta}\begin{vmatrix}\sin\theta\cos\phi & \hat{r} & \cos\theta \\ \cos\theta\cos\phi & \hat{\theta} & -\sin\theta \\ -\sin\phi & \hat{\phi} & 0\end{vmatrix} = \hat{r}\sin\theta\sin\phi + \hat{\theta}\cos\theta\sin\phi + \hat{\phi}\cos\phi. \]
\[ \partial\hat{\phi}/\partial\phi = -((\hat{r}\sin\theta\cos\phi + \hat{\theta}\cos\theta\cos\phi - \hat{\phi}\sin\phi)\cos\phi + (\hat{r}\sin\theta\sin\phi + \hat{\theta}\cos\theta\sin\phi + \hat{\phi}\cos\phi)\sin\phi). \]
\[ \partial\hat{\phi}/\partial\phi = -(\hat{r}\sin\theta + \hat{\theta}\cos\theta). \]

Komentar

Postingan populer dari blog ini

Persamaan Hamilton

Andaikan ada sebuah Lagrangian $L \mapsto (q, \dot{q}, t)$, di mana $q$ adalah satu-satunya koordinat umum, $t$ adalah waktu, dan $\dot{q} := dq/dt$, serta $q \mapsto t$ dan $\dot{q} \mapsto t$.  Andaikan ada sebuah momentum umum $p$ yang didefinisikan sebagai \[ p := \left(\frac{\partial L}{\partial\dot{q}}\right)_{q,t}. \] Tentu saja, $p \mapsto (q, \dot{q}, t)$, sehingga tentu saja $\dot{q} \mapsto (q, p, t)$. Karena $L$ memenuhi persamaan Euler-Lagrange, yaitu \[ \frac{d}{dt}\left(\frac{\partial L}{\partial\dot{q}}\right)_{q,t} = \left(\frac{\partial L}{\partial q}\right)_{\dot{q},t}, \] maka \[ \dot{p} = \left(\frac{\partial L}{\partial q}\right)_{\dot{q},t}. \] Tentu saja, $\dot{p} \mapsto (q, \dot{q}, t)$. Andaikan ada sebuah Hamiltonian $H \mapsto (q, p, t)$, yang didefinisikan sebagai $H := \dot{q}p - L$. Karena $L = L_{q, \dot{q}, t}(q, \dot{q}_{q,p,t}(q, p, t), t)$, maka \[ \left(\frac{\partial H}{\partial q}\right)_{p, t} = \left(\frac{\partial\dot{q}}{\partial

Fungsi Homogen Berderajat Sebarang

Diketahui ada kuantitas  $f:=\sum_{i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}x_{i_1}\cdots{x}_{i_n}$, sehingga \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{i_1,\dots,i_n}^r\sum_{k=1}^n{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}\delta_{ii_k}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}x_i{x}_{i_{k+1}}\cdots{x}_{i_n}. \] Karena ${M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}x_i=\sum_{i_k=1}^r\delta_{ii_k}{M}_{i_1\cdots{i}_{k-1}i_ki_{k+1}\cdots{i}_n}x_{i_k}$, maka \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_n}\delta_{ii_k}. \] Karena

Rapat Peluang Keberadaan Partikel Klasik

Andaikan ada sebuah partikel klasik yang bergerak bolak-balik sepanjang garis riil $\mathbb{R}$ dengan posisi $x = A\sin(2\pi t/T)$, di mana $A, T \in \mathbb{R}^+$ berturut-turut adalah amplitudo dan periode getaran, dan $t \in \mathbb{R}$ adalah waktu.  Tentu saja, $t = (T/2\pi)\arcsin(x/A)$.  Rapat peluang keberadaan partikel klasik tersebut tentu saja adalah (di mana $P$ adalah peluangnya) \[ \frac{dP}{dx} = \frac{2}{T}\frac{dt}{dx} = \frac{1}{\pi}\frac{d}{dx}\arcsin\frac{x}{A} = \frac{1}{\pi A}\frac{1}{\sqrt{1 - (x/A)^2}} = \frac{1}{\pi\sqrt{A^2 - x^2}}. \] Peluang untuk menemukan partikel pada interval $-A < x < A$ tentu saja adalah \[ P_x(A) - P_x(-A) = \int_{-A}^A \frac{dP}{dx}dx = \frac{2}{T}(t_x(A) - t_x(-A)) = \frac{1}{\pi}(\arcsin 1 - \arcsin(-1)) = \frac{1}{\pi}\left(\frac{\pi}{2} - \left(-\frac{\pi}{2}\right)\right) = 1. \] Peluang untuk menemukan partikel pada interval $0 < x < A$ tentu saja adalah \[ P_x(A) - P_x(0) = \int_0^A \frac{dP}{dx}dx = \frac{2}