Hukum arus Kirchhoff dapat diperoleh dari persamaan kontinyuitas yang diperoleh dari hukum Ampere.
Hukum Ampere adalah
\[ \nabla\times\vec{H} = \vec{J} + \partial\vec{D}/\partial t. \]
Pengambilan divergensi pada kedua ruas persamaan terakhir menghasilkan
\[ 0 = \nabla\cdot\vec{J} + \partial\rho/\partial t, \]
di mana $\nabla\cdot\vec{D} = \rho$ merupakan hukum Gauss.
Persamaan terakhir ini merupakan persamaan kontinyuitas untuk elektromagnetisme.
Pengintegralan kedua ruas persamaan kontinyuitas tersebut ke seluruh volume $V$, dengan menerapkan teorema divergensi Gauss, menghasilkan
\[ 0 = \oint_{\partial V}\vec{J}\cdot d^2\vec{r} + \frac{dq}{dt}, \]
di mana $q = \int_V \rho d^3\vec{r}$ adalah muatan listrik pada $V$.
Untuk volume $V$ yang mendekati titik matematis yang berupa simpul, maka $\oint_{\partial V}\vec{J}\cdot d^2\vec{r} = 0$. Sementara itu $I := dq/dt = \sum_{j=1}^n I_j$ adalah total arus listrik yang melewati titik simpul tersebut, sehingga
\[ \sum_{j=1}^n I_j = 0. \]
Inilah hukum arus Kirchhoff, dengan menganggap bahwa $I_j$ bernilai positif apabila arus keluar dari simpul, dan bernilai negatif apabila arus masuk ke simpul. Kesepakatan sebaliknya bolehlah ditetapkan, asalkan konsisten.
Hukum Ampere adalah
\[ \nabla\times\vec{H} = \vec{J} + \partial\vec{D}/\partial t. \]
Pengambilan divergensi pada kedua ruas persamaan terakhir menghasilkan
\[ 0 = \nabla\cdot\vec{J} + \partial\rho/\partial t, \]
di mana $\nabla\cdot\vec{D} = \rho$ merupakan hukum Gauss.
Persamaan terakhir ini merupakan persamaan kontinyuitas untuk elektromagnetisme.
Pengintegralan kedua ruas persamaan kontinyuitas tersebut ke seluruh volume $V$, dengan menerapkan teorema divergensi Gauss, menghasilkan
\[ 0 = \oint_{\partial V}\vec{J}\cdot d^2\vec{r} + \frac{dq}{dt}, \]
di mana $q = \int_V \rho d^3\vec{r}$ adalah muatan listrik pada $V$.
Untuk volume $V$ yang mendekati titik matematis yang berupa simpul, maka $\oint_{\partial V}\vec{J}\cdot d^2\vec{r} = 0$. Sementara itu $I := dq/dt = \sum_{j=1}^n I_j$ adalah total arus listrik yang melewati titik simpul tersebut, sehingga
\[ \sum_{j=1}^n I_j = 0. \]
Inilah hukum arus Kirchhoff, dengan menganggap bahwa $I_j$ bernilai positif apabila arus keluar dari simpul, dan bernilai negatif apabila arus masuk ke simpul. Kesepakatan sebaliknya bolehlah ditetapkan, asalkan konsisten.
Komentar
Posting Komentar