Langsung ke konten utama

Menurunkan Hukum Arus Kirchhoff dari Hukum Ampere

Hukum arus Kirchhoff dapat diperoleh dari persamaan kontinyuitas yang diperoleh dari hukum Ampere.

Hukum Ampere adalah
\[ \nabla\times\vec{H} = \vec{J} + \partial\vec{D}/\partial t. \]
Pengambilan divergensi pada kedua ruas persamaan terakhir menghasilkan
\[ 0 = \nabla\cdot\vec{J} + \partial\rho/\partial t, \]
di mana $\nabla\cdot\vec{D} = \rho$ merupakan hukum Gauss.

Persamaan terakhir ini merupakan persamaan kontinyuitas untuk elektromagnetisme.

Pengintegralan kedua ruas persamaan kontinyuitas tersebut ke seluruh volume $V$, dengan menerapkan teorema divergensi Gauss, menghasilkan
\[ 0 = \oint_{\partial V}\vec{J}\cdot d^2\vec{r} + \frac{dq}{dt}, \]
di mana $q = \int_V \rho d^3\vec{r}$ adalah muatan listrik pada $V$.

Untuk volume $V$ yang mendekati titik matematis yang berupa simpul, maka $\oint_{\partial V}\vec{J}\cdot d^2\vec{r} = 0$.  Sementara itu $I := dq/dt = \sum_{j=1}^n I_j$ adalah total arus listrik yang melewati titik simpul tersebut, sehingga
\[ \sum_{j=1}^n I_j = 0. \]
Inilah hukum arus Kirchhoff, dengan menganggap bahwa $I_j$ bernilai positif apabila arus keluar dari simpul, dan bernilai negatif apabila arus masuk ke simpul.  Kesepakatan sebaliknya bolehlah ditetapkan, asalkan konsisten.

Komentar

Postingan populer dari blog ini

Fungsi Homogen Berderajat Sebarang

Diketahui ada kuantitas  $f:=\sum_{i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}x_{i_1}\cdots{x}_{i_n}$, sehingga \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{i_1,\dots,i_n}^r\sum_{k=1}^n{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}\delta_{ii_k}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}x_i{x}_{i_{k+1}}\cdots{x}_{i_n}. \] Karena ${M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}x_i=\sum_{i_k=1}^r\delta_{ii_k}{M}_{i_1\cdots{i}_{k-1}i_ki_{k+1}\cdots{i}_n}x_{i_k}$, maka \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_n}\delta_{ii_k}. \] Ka...

Sebuah Kulit Bola dalam Sistem Koordinat Kulit Bola

Sebuah kulit bola memiliki tempat kedudukan \[ S^2(\vec{r}_0, R) := \{\vec{r} \in \mathbb{R}^3 ~|~ |\vec{r} - \vec{r}_0| = R\} \] di mana $\vec{r}_0 \in \mathbb{R}^3$ adalah pusat kulit bola tersebut, dan $R \in \mathbb{R}^+$ adalah jari-jarinya. Tentu saja, \[ \vec{r} := r(\hat{x}\sin\theta\cos\phi + \hat{y}\sin\theta\sin\phi + \hat{z}\cos\theta) \] dan \[ \vec{r}_0 := r_0(\hat{x}\sin\theta_0\cos\phi_0 + \hat{y}\sin\theta_0\sin\phi_0 + \hat{z}\cos\theta_0) \] di mana $r, r_0 \in \mathbb{R}^+\cup\{0\}$, $\theta, \theta_0 \in [0, \pi]$, dan $\phi, \phi_0 \in \{0\}\cup(0, 2\pi)$, serta $\hat{x} := (1, 0, 0)$, $\hat{y} := (0, 1, 0)$, dan $\hat{z} := (0, 0, 1)$. Tentu saja, \[ \vec{r} - \vec{r}_0 = \hat{x}(r\sin\theta\cos\phi - r_0\sin\theta_0\cos\phi_0) \] \[ + \hat{y}(r\sin\theta\sin\phi - r_0\sin\theta_0\sin\phi_0) + \hat{z}(r\cos\theta - r_0\cos\theta_0) \] sehingga \[ |\vec{r} - \vec{r}_0|^2 = r^2\sin^2\theta\cos^2\phi + r_0^2\sin^2\theta_0\cos^2\phi_0 - 2r_0r\sin\theta_...