Langsung ke konten utama

Jarak Euclidean Titik, Garis, dan Bidang

Jarak antara titik $(a_x,a_y,a_z)$ dan titik $(b_x,b_y,b_z)$ adalah
\[ d_{00}=\sqrt{(a_x-b_x)^2+(a_y-b_y)^2+(a_z-b_z)^2}. \]
Jarak antara titik $(a_x,a_y,a_z)$ dan garis $\displaystyle \frac{x-x_0}{v_x}=\frac{y-y_0}{v_y}=\frac{z-z_0}{v_z}$ adalah
\[ d_{01}=\sqrt{\frac{[(a_y-y_0)v_z-(a_z-z_0)v_y]^2+[(a_z-z_0)v_x-(a_x-x_0)v_z]^2+[(a_x-x_0)v_y-(a_y-y_0)v_x]^2}{{v_x}^2+{v_y}^2+{v_z}^2}}. \]
Jarak antara titik $(a_x,a_y,a_z)$ dan bidang $N_xx+N_yy+N_zz+C=0$ adalah
\[ d_{02}=\frac{|a_xN_x+a_yN_y+a_zN_z+C|}{\sqrt{{N_x}^2+{N_y}^2+{N_z}^2}}. \]
Jarak antara garis $\displaystyle \frac{x-x_0}{v_x}=\frac{y-y_0}{v_y}=\frac{z-z_0}{v_z}$ dan garis $\displaystyle \frac{x-x_1}{w_x}=\frac{y-y_1}{w_y}=\frac{z-z_1}{w_z}$ adalah
\[ d_{11}=\frac{|(x_0-x_1)(v_yw_z-v_zw_y)+(y_0-y_1)(v_zw_x-v_xw_z)+(z_0-z_1)(v_xw_y-v_yw_x)|}{\sqrt{(v_yw_z-v_zw_y)^2+(v_zw_x-v_xw_z)^2+(v_xw_y-v_yw_x)^2}} \]
apabila $v_yw_z\neq{v_zw_y}$ atau $v_zw_x\neq{v_xw_z}$ atau $v_xw_y\neq{v_yw_x}$.

Apabila $v_yw_z=v_zw_y$ dan $v_zw_x=v_xw_z$ dan $v_xw_y=v_yw_x$, maka
\[ d_{11}=\sqrt{\frac{[(y_0-y_1)v_z-(z_0-z_1)v_y]^2+[(z_0-z_1)v_x-(x_0-x_1)v_z]^2+[(x_0-x_1)v_y-(y_0-y_1)v_x]^2}{{v_x}^2+{v_y}^2+{v_z}^2}}. \]
Jarak antara garis $\displaystyle \frac{x-x_0}{v_x}=\frac{y-y_0}{v_y}=\frac{z-z_0}{v_z}$ dan bidang $N_xx+N_yy+N_zz+C=0$ adalah
\[ d_{12}=\frac{|x_0N_x+y_0N_y+z_0N_z+C|}{\sqrt{{N_x}^2+{N_y}^2+{N_z}^2}} \]
apabila $N_xv_x+N_yv_y+N_zv_z=0$.

Apabila $N_xv_x+N_yv_y+N_zv_z \neq 0$, maka $d_{12}=0$.

Jarak antara bidang $N_xx+N_yy+N_zz+C=0$ dan bidang $kN_xx+kN_yy+kN_zz+C^\prime=0$ adalah
\[ d_{22}=\frac{|C-(C^\prime/k)|}{\sqrt{{N_x}^2+{N_y}^2+{N_z}^2}}. \]

Jarak antara bidang $N_xx+N_yy+N_zz+C=0$ dan bidang $M_xx+M_yy+M_zz+C^\prime=0$ adalah $d_{22}=0$ apabila $N_yM_z\neq{N_zM_y}$ atau $N_zM_x\neq{N_xM_z}$ atau $N_xM_y\neq{N_yM_x}$.

Komentar

Postingan populer dari blog ini

Fungsi Homogen Berderajat Sebarang

Diketahui ada kuantitas  $f:=\sum_{i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}x_{i_1}\cdots{x}_{i_n}$, sehingga \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{i_1,\dots,i_n}^r\sum_{k=1}^n{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}\delta_{ii_k}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}x_i{x}_{i_{k+1}}\cdots{x}_{i_n}. \] Karena ${M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}x_i=\sum_{i_k=1}^r\delta_{ii_k}{M}_{i_1\cdots{i}_{k-1}i_ki_{k+1}\cdots{i}_n}x_{i_k}$, maka \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_n}\delta_{ii_k}. \] Ka...

Menurunkan Hukum Arus Kirchhoff dari Hukum Ampere

Hukum arus Kirchhoff dapat diperoleh dari persamaan kontinyuitas yang diperoleh dari hukum Ampere. Hukum Ampere adalah \[ \nabla\times\vec{H} = \vec{J} + \partial\vec{D}/\partial t. \] Pengambilan divergensi pada kedua ruas persamaan terakhir menghasilkan \[ 0 = \nabla\cdot\vec{J} + \partial\rho/\partial t, \] di mana $\nabla\cdot\vec{D} = \rho$ merupakan hukum Gauss. Persamaan terakhir ini merupakan persamaan kontinyuitas untuk elektromagnetisme. Pengintegralan kedua ruas persamaan kontinyuitas tersebut ke seluruh volume $V$, dengan menerapkan teorema divergensi Gauss, menghasilkan \[ 0 = \oint_{\partial V}\vec{J}\cdot d^2\vec{r} + \frac{dq}{dt}, \] di mana $q = \int_V \rho d^3\vec{r}$ adalah muatan listrik pada $V$. Untuk volume $V$ yang mendekati titik matematis yang berupa simpul, maka $\oint_{\partial V}\vec{J}\cdot d^2\vec{r} = 0$.  Sementara itu $I := dq/dt = \sum_{j=1}^n I_j$ adalah total arus listrik yang melewati titik simpul tersebut, sehingga \[ \sum_{j=1...

Sebuah Kulit Bola dalam Sistem Koordinat Kulit Bola

Sebuah kulit bola memiliki tempat kedudukan \[ S^2(\vec{r}_0, R) := \{\vec{r} \in \mathbb{R}^3 ~|~ |\vec{r} - \vec{r}_0| = R\} \] di mana $\vec{r}_0 \in \mathbb{R}^3$ adalah pusat kulit bola tersebut, dan $R \in \mathbb{R}^+$ adalah jari-jarinya. Tentu saja, \[ \vec{r} := r(\hat{x}\sin\theta\cos\phi + \hat{y}\sin\theta\sin\phi + \hat{z}\cos\theta) \] dan \[ \vec{r}_0 := r_0(\hat{x}\sin\theta_0\cos\phi_0 + \hat{y}\sin\theta_0\sin\phi_0 + \hat{z}\cos\theta_0) \] di mana $r, r_0 \in \mathbb{R}^+\cup\{0\}$, $\theta, \theta_0 \in [0, \pi]$, dan $\phi, \phi_0 \in \{0\}\cup(0, 2\pi)$, serta $\hat{x} := (1, 0, 0)$, $\hat{y} := (0, 1, 0)$, dan $\hat{z} := (0, 0, 1)$. Tentu saja, \[ \vec{r} - \vec{r}_0 = \hat{x}(r\sin\theta\cos\phi - r_0\sin\theta_0\cos\phi_0) \] \[ + \hat{y}(r\sin\theta\sin\phi - r_0\sin\theta_0\sin\phi_0) + \hat{z}(r\cos\theta - r_0\cos\theta_0) \] sehingga \[ |\vec{r} - \vec{r}_0|^2 = r^2\sin^2\theta\cos^2\phi + r_0^2\sin^2\theta_0\cos^2\phi_0 - 2r_0r\sin\theta_...