Langsung ke konten utama

Jarak Euclidean Titik, Garis, dan Bidang

Jarak antara titik $(a_x,a_y,a_z)$ dan titik $(b_x,b_y,b_z)$ adalah
\[ d_{00}=\sqrt{(a_x-b_x)^2+(a_y-b_y)^2+(a_z-b_z)^2}. \]
Jarak antara titik $(a_x,a_y,a_z)$ dan garis $\displaystyle \frac{x-x_0}{v_x}=\frac{y-y_0}{v_y}=\frac{z-z_0}{v_z}$ adalah
\[ d_{01}=\sqrt{\frac{[(a_y-y_0)v_z-(a_z-z_0)v_y]^2+[(a_z-z_0)v_x-(a_x-x_0)v_z]^2+[(a_x-x_0)v_y-(a_y-y_0)v_x]^2}{{v_x}^2+{v_y}^2+{v_z}^2}}. \]
Jarak antara titik $(a_x,a_y,a_z)$ dan bidang $N_xx+N_yy+N_zz+C=0$ adalah
\[ d_{02}=\frac{|a_xN_x+a_yN_y+a_zN_z+C|}{\sqrt{{N_x}^2+{N_y}^2+{N_z}^2}}. \]
Jarak antara garis $\displaystyle \frac{x-x_0}{v_x}=\frac{y-y_0}{v_y}=\frac{z-z_0}{v_z}$ dan garis $\displaystyle \frac{x-x_1}{w_x}=\frac{y-y_1}{w_y}=\frac{z-z_1}{w_z}$ adalah
\[ d_{11}=\frac{|(x_0-x_1)(v_yw_z-v_zw_y)+(y_0-y_1)(v_zw_x-v_xw_z)+(z_0-z_1)(v_xw_y-v_yw_x)|}{\sqrt{(v_yw_z-v_zw_y)^2+(v_zw_x-v_xw_z)^2+(v_xw_y-v_yw_x)^2}} \]
apabila $v_yw_z\neq{v_zw_y}$ atau $v_zw_x\neq{v_xw_z}$ atau $v_xw_y\neq{v_yw_x}$.

Apabila $v_yw_z=v_zw_y$ dan $v_zw_x=v_xw_z$ dan $v_xw_y=v_yw_x$, maka
\[ d_{11}=\sqrt{\frac{[(y_0-y_1)v_z-(z_0-z_1)v_y]^2+[(z_0-z_1)v_x-(x_0-x_1)v_z]^2+[(x_0-x_1)v_y-(y_0-y_1)v_x]^2}{{v_x}^2+{v_y}^2+{v_z}^2}}. \]
Jarak antara garis $\displaystyle \frac{x-x_0}{v_x}=\frac{y-y_0}{v_y}=\frac{z-z_0}{v_z}$ dan bidang $N_xx+N_yy+N_zz+C=0$ adalah
\[ d_{12}=\frac{|x_0N_x+y_0N_y+z_0N_z+C|}{\sqrt{{N_x}^2+{N_y}^2+{N_z}^2}} \]
apabila $N_xv_x+N_yv_y+N_zv_z=0$.

Apabila $N_xv_x+N_yv_y+N_zv_z \neq 0$, maka $d_{12}=0$.

Jarak antara bidang $N_xx+N_yy+N_zz+C=0$ dan bidang $kN_xx+kN_yy+kN_zz+C^\prime=0$ adalah
\[ d_{22}=\frac{|C-(C^\prime/k)|}{\sqrt{{N_x}^2+{N_y}^2+{N_z}^2}}. \]

Jarak antara bidang $N_xx+N_yy+N_zz+C=0$ dan bidang $M_xx+M_yy+M_zz+C^\prime=0$ adalah $d_{22}=0$ apabila $N_yM_z\neq{N_zM_y}$ atau $N_zM_x\neq{N_xM_z}$ atau $N_xM_y\neq{N_yM_x}$.

Komentar

Postingan populer dari blog ini

Persamaan Hamilton

Andaikan ada sebuah Lagrangian $L \mapsto (q, \dot{q}, t)$, di mana $q$ adalah satu-satunya koordinat umum, $t$ adalah waktu, dan $\dot{q} := dq/dt$, serta $q \mapsto t$ dan $\dot{q} \mapsto t$.  Andaikan ada sebuah momentum umum $p$ yang didefinisikan sebagai \[ p := \left(\frac{\partial L}{\partial\dot{q}}\right)_{q,t}. \] Tentu saja, $p \mapsto (q, \dot{q}, t)$, sehingga tentu saja $\dot{q} \mapsto (q, p, t)$. Karena $L$ memenuhi persamaan Euler-Lagrange, yaitu \[ \frac{d}{dt}\left(\frac{\partial L}{\partial\dot{q}}\right)_{q,t} = \left(\frac{\partial L}{\partial q}\right)_{\dot{q},t}, \] maka \[ \dot{p} = \left(\frac{\partial L}{\partial q}\right)_{\dot{q},t}. \] Tentu saja, $\dot{p} \mapsto (q, \dot{q}, t)$. Andaikan ada sebuah Hamiltonian $H \mapsto (q, p, t)$, yang didefinisikan sebagai $H := \dot{q}p - L$. Karena $L = L_{q, \dot{q}, t}(q, \dot{q}_{q,p,t}(q, p, t), t)$, maka \[ \left(\frac{\partial H}{\partial q}\right)_{p, t} = \left(\frac{\partial\dot{q}}{\partial

Turunan Waktu Vektor Posisi yang Berotasi

Misalkan di ruang $\mathbb{R}^3$ ada vektor sudut rotasi $\vec{\theta} := \theta\hat{n}$ yang berpangkal di titik $\vec{0}$, di mana $\theta$ merupakan sudut rotasi yang bergantung pada waktu $t$, serta $\hat{n}$ merupakan vektor satuan arah orientasi rotasi yang konstan terhadap $t$.  Vektor posisi mula-mula $\vec{r}_0$ yang berotasi oleh $\vec{\theta}$ tersebut pada waktu $t$ akan berpindah ke posisi \[ \vec{r} = (\hat{n}\cdot\vec{r}_0)\hat{n} + (\hat{n}\times\vec{r}_0)\times\hat{n}\cos\theta + \hat{n}\times\vec{r}_0\sin\theta. \] Turunan $\vec{r}$ terhadap $t$ tentu saja adalah \[ \vec{v} := \frac{d\vec{r}}{dt} = -(\hat{n}\times\vec{r}_0)\times\hat{n}\frac{d\theta}{dt}\sin\theta + \hat{n}\times\vec{r}_0\frac{d\theta}{dt}\cos\theta, \] sehingga \[ \vec{v} = \vec{\omega}\times(\hat{n}\times\vec{r}_0\sin\theta + \vec{r}_0\cos\theta), \] di mana $\vec{\omega} := d\vec{\theta}/dt$. Karena $(\hat{n}\times\vec{r}_0)\times\hat{n} = \vec{r}_0 - (\hat{n}\cdot\vec{r}_0)\hat{n}$ dan $\v

Fungsi Homogen Berderajat Sebarang

Diketahui ada kuantitas  $f:=\sum_{i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}x_{i_1}\cdots{x}_{i_n}$, sehingga \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{i_1,\dots,i_n}^r\sum_{k=1}^n{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}\delta_{ii_k}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}x_i{x}_{i_{k+1}}\cdots{x}_{i_n}. \] Karena ${M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}x_i=\sum_{i_k=1}^r\delta_{ii_k}{M}_{i_1\cdots{i}_{k-1}i_ki_{k+1}\cdots{i}_n}x_{i_k}$, maka \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_n}\delta_{ii_k}. \] Karena