Langsung ke konten utama

Medan Listrik akibat Muatan Berbentuk Sebagian Busur Lingkaran

Andaikan di ruang $\mathbb{R}^3$ ada muatan yang terdistribusi homogen dengan rapat muatan $\lambda \in \mathbb{R}$ berbentuk sebagian busur lingkaran, yaitu
\[ C(R, \phi) := \{R(\cos\phi', \sin\phi', 0) ~|~ \phi' \in (0, \phi)\} \]
di mana $R \in \mathbb{R}^+$ dan $\phi \in \{0\}\cup(0, 2\pi)$.

Posisi titik pada $C(R, \phi)$ adalah
\[ \vec{r}' := R(\hat{x}\cos\phi' + \hat{y}\sin\phi') \]
di mana $\hat{x} := (1, 0, 0)$ dan $\hat{y} := (0, 1, 0)$.

Kita akan mencari medan listrik $\vec{E}$ di titik $\vec{r} := (0, 0, 0)$, yaitu
\[ \vec{E} = \frac{\lambda R}{4\pi\epsilon_0}\int_0^\phi \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3}d\phi' \]
di mana $\epsilon_0$ adalah permitivitas listrik di ruang hampa.

Selanjutnya,
\[ \vec{E} = -\frac{\lambda R^2}{4\pi\epsilon_0}\int_0^\phi \frac{\hat{x}\cos\phi' + \hat{y}\sin\phi'}{R^3}d\phi'. \]
\[ \vec{E} = -\frac{\lambda}{4\pi\epsilon_0R}\int_0^\phi (\hat{x}\cos\phi' + \hat{y}\sin\phi')d\phi' = \hat{x}E_x + \hat{y}E_y + \hat{z}E_z. \]
Tentu saja, $E_z = 0$, sedangkan komponen yang lain adalah
\[ E_x = -\frac{\lambda}{4\pi\epsilon_0R}\sin\phi \]
dan
\[ E_y = \frac{\lambda}{4\pi\epsilon_0R}(\cos\phi - 1). \]
Apabila $\phi = 0$ atau $\phi = 2\pi$, maka $E_x = E_y = 0$ sesuai dengan yang diharapkan.

Komentar

Postingan populer dari blog ini

Menurunkan Hukum Arus Kirchhoff dari Hukum Ampere

Hukum arus Kirchhoff dapat diperoleh dari persamaan kontinyuitas yang diperoleh dari hukum Ampere. Hukum Ampere adalah \[ \nabla\times\vec{H} = \vec{J} + \partial\vec{D}/\partial t. \] Pengambilan divergensi pada kedua ruas persamaan terakhir menghasilkan \[ 0 = \nabla\cdot\vec{J} + \partial\rho/\partial t, \] di mana $\nabla\cdot\vec{D} = \rho$ merupakan hukum Gauss. Persamaan terakhir ini merupakan persamaan kontinyuitas untuk elektromagnetisme. Pengintegralan kedua ruas persamaan kontinyuitas tersebut ke seluruh volume $V$, dengan menerapkan teorema divergensi Gauss, menghasilkan \[ 0 = \oint_{\partial V}\vec{J}\cdot d^2\vec{r} + \frac{dq}{dt}, \] di mana $q = \int_V \rho d^3\vec{r}$ adalah muatan listrik pada $V$. Untuk volume $V$ yang mendekati titik matematis yang berupa simpul, maka $\oint_{\partial V}\vec{J}\cdot d^2\vec{r} = 0$.  Sementara itu $I := dq/dt = \sum_{j=1}^n I_j$ adalah total arus listrik yang melewati titik simpul tersebut, sehingga \[ \sum_{j=1...

Rapat Peluang Keberadaan Partikel Klasik

Andaikan ada sebuah partikel klasik yang bergerak bolak-balik sepanjang garis riil $\mathbb{R}$ dengan posisi $x = A\sin(2\pi t/T)$, di mana $A, T \in \mathbb{R}^+$ berturut-turut adalah amplitudo dan periode getaran, dan $t \in \mathbb{R}$ adalah waktu.  Tentu saja, $t = (T/2\pi)\arcsin(x/A)$.  Rapat peluang keberadaan partikel klasik tersebut tentu saja adalah (di mana $P$ adalah peluangnya) \[ \frac{dP}{dx} = \frac{2}{T}\frac{dt}{dx} = \frac{1}{\pi}\frac{d}{dx}\arcsin\frac{x}{A} = \frac{1}{\pi A}\frac{1}{\sqrt{1 - (x/A)^2}} = \frac{1}{\pi\sqrt{A^2 - x^2}}. \] Peluang untuk menemukan partikel pada interval $-A < x < A$ tentu saja adalah \[ P_x(A) - P_x(-A) = \int_{-A}^A \frac{dP}{dx}dx = \frac{2}{T}(t_x(A) - t_x(-A)) = \frac{1}{\pi}(\arcsin 1 - \arcsin(-1)) = \frac{1}{\pi}\left(\frac{\pi}{2} - \left(-\frac{\pi}{2}\right)\right) = 1. \] Peluang untuk menemukan partikel pada interval $0 < x < A$ tentu saja adalah \[ P_x(A) - P_x(0) = \int_0^A \frac{dP}{dx}dx =...

Fungsi Homogen Berderajat Sebarang

Diketahui ada kuantitas  $f:=\sum_{i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}x_{i_1}\cdots{x}_{i_n}$, sehingga \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{i_1,\dots,i_n}^r\sum_{k=1}^n{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}\delta_{ii_k}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}x_i{x}_{i_{k+1}}\cdots{x}_{i_n}. \] Karena ${M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}x_i=\sum_{i_k=1}^r\delta_{ii_k}{M}_{i_1\cdots{i}_{k-1}i_ki_{k+1}\cdots{i}_n}x_{i_k}$, maka \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_n}\delta_{ii_k}. \] Ka...