Langsung ke konten utama

Medan Listrik akibat Muatan Berbentuk Sebagian Busur Lingkaran

Andaikan di ruang $\mathbb{R}^3$ ada muatan yang terdistribusi homogen dengan rapat muatan $\lambda \in \mathbb{R}$ berbentuk sebagian busur lingkaran, yaitu
\[ C(R, \phi) := \{R(\cos\phi', \sin\phi', 0) ~|~ \phi' \in (0, \phi)\} \]
di mana $R \in \mathbb{R}^+$ dan $\phi \in \{0\}\cup(0, 2\pi)$.

Posisi titik pada $C(R, \phi)$ adalah
\[ \vec{r}' := R(\hat{x}\cos\phi' + \hat{y}\sin\phi') \]
di mana $\hat{x} := (1, 0, 0)$ dan $\hat{y} := (0, 1, 0)$.

Kita akan mencari medan listrik $\vec{E}$ di titik $\vec{r} := (0, 0, 0)$, yaitu
\[ \vec{E} = \frac{\lambda R}{4\pi\epsilon_0}\int_0^\phi \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3}d\phi' \]
di mana $\epsilon_0$ adalah permitivitas listrik di ruang hampa.

Selanjutnya,
\[ \vec{E} = -\frac{\lambda R^2}{4\pi\epsilon_0}\int_0^\phi \frac{\hat{x}\cos\phi' + \hat{y}\sin\phi'}{R^3}d\phi'. \]
\[ \vec{E} = -\frac{\lambda}{4\pi\epsilon_0R}\int_0^\phi (\hat{x}\cos\phi' + \hat{y}\sin\phi')d\phi' = \hat{x}E_x + \hat{y}E_y + \hat{z}E_z. \]
Tentu saja, $E_z = 0$, sedangkan komponen yang lain adalah
\[ E_x = -\frac{\lambda}{4\pi\epsilon_0R}\sin\phi \]
dan
\[ E_y = \frac{\lambda}{4\pi\epsilon_0R}(\cos\phi - 1). \]
Apabila $\phi = 0$ atau $\phi = 2\pi$, maka $E_x = E_y = 0$ sesuai dengan yang diharapkan.

Komentar

Postingan populer dari blog ini

Persamaan Hamilton

Andaikan ada sebuah Lagrangian $L \mapsto (q, \dot{q}, t)$, di mana $q$ adalah satu-satunya koordinat umum, $t$ adalah waktu, dan $\dot{q} := dq/dt$, serta $q \mapsto t$ dan $\dot{q} \mapsto t$.  Andaikan ada sebuah momentum umum $p$ yang didefinisikan sebagai \[ p := \left(\frac{\partial L}{\partial\dot{q}}\right)_{q,t}. \] Tentu saja, $p \mapsto (q, \dot{q}, t)$, sehingga tentu saja $\dot{q} \mapsto (q, p, t)$. Karena $L$ memenuhi persamaan Euler-Lagrange, yaitu \[ \frac{d}{dt}\left(\frac{\partial L}{\partial\dot{q}}\right)_{q,t} = \left(\frac{\partial L}{\partial q}\right)_{\dot{q},t}, \] maka \[ \dot{p} = \left(\frac{\partial L}{\partial q}\right)_{\dot{q},t}. \] Tentu saja, $\dot{p} \mapsto (q, \dot{q}, t)$. Andaikan ada sebuah Hamiltonian $H \mapsto (q, p, t)$, yang didefinisikan sebagai $H := \dot{q}p - L$. Karena $L = L_{q, \dot{q}, t}(q, \dot{q}_{q,p,t}(q, p, t), t)$, maka \[ \left(\frac{\partial H}{\partial q}\right)_{p, t} = \left(\frac{\partial\dot{q}}{\partial

Fungsi Homogen Berderajat Sebarang

Diketahui ada kuantitas  $f:=\sum_{i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}x_{i_1}\cdots{x}_{i_n}$, sehingga \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{i_1,\dots,i_n}^r\sum_{k=1}^n{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}\delta_{ii_k}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}x_i{x}_{i_{k+1}}\cdots{x}_{i_n}. \] Karena ${M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}x_i=\sum_{i_k=1}^r\delta_{ii_k}{M}_{i_1\cdots{i}_{k-1}i_ki_{k+1}\cdots{i}_n}x_{i_k}$, maka \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_n}\delta_{ii_k}. \] Karena

Rapat Peluang Keberadaan Partikel Klasik

Andaikan ada sebuah partikel klasik yang bergerak bolak-balik sepanjang garis riil $\mathbb{R}$ dengan posisi $x = A\sin(2\pi t/T)$, di mana $A, T \in \mathbb{R}^+$ berturut-turut adalah amplitudo dan periode getaran, dan $t \in \mathbb{R}$ adalah waktu.  Tentu saja, $t = (T/2\pi)\arcsin(x/A)$.  Rapat peluang keberadaan partikel klasik tersebut tentu saja adalah (di mana $P$ adalah peluangnya) \[ \frac{dP}{dx} = \frac{2}{T}\frac{dt}{dx} = \frac{1}{\pi}\frac{d}{dx}\arcsin\frac{x}{A} = \frac{1}{\pi A}\frac{1}{\sqrt{1 - (x/A)^2}} = \frac{1}{\pi\sqrt{A^2 - x^2}}. \] Peluang untuk menemukan partikel pada interval $-A < x < A$ tentu saja adalah \[ P_x(A) - P_x(-A) = \int_{-A}^A \frac{dP}{dx}dx = \frac{2}{T}(t_x(A) - t_x(-A)) = \frac{1}{\pi}(\arcsin 1 - \arcsin(-1)) = \frac{1}{\pi}\left(\frac{\pi}{2} - \left(-\frac{\pi}{2}\right)\right) = 1. \] Peluang untuk menemukan partikel pada interval $0 < x < A$ tentu saja adalah \[ P_x(A) - P_x(0) = \int_0^A \frac{dP}{dx}dx = \frac{2}