Langsung ke konten utama

Rapat Peluang Keberadaan Partikel Klasik

Andaikan ada sebuah partikel klasik yang bergerak bolak-balik sepanjang garis riil $\mathbb{R}$ dengan posisi $x = A\sin(2\pi t/T)$, di mana $A, T \in \mathbb{R}^+$ berturut-turut adalah amplitudo dan periode getaran, dan $t \in \mathbb{R}$ adalah waktu.  Tentu saja, $t = (T/2\pi)\arcsin(x/A)$.  Rapat peluang keberadaan partikel klasik tersebut tentu saja adalah (di mana $P$ adalah peluangnya)
\[ \frac{dP}{dx} = \frac{2}{T}\frac{dt}{dx} = \frac{1}{\pi}\frac{d}{dx}\arcsin\frac{x}{A} = \frac{1}{\pi A}\frac{1}{\sqrt{1 - (x/A)^2}} = \frac{1}{\pi\sqrt{A^2 - x^2}}. \]
Peluang untuk menemukan partikel pada interval $-A < x < A$ tentu saja adalah
\[ P_x(A) - P_x(-A) = \int_{-A}^A \frac{dP}{dx}dx = \frac{2}{T}(t_x(A) - t_x(-A)) = \frac{1}{\pi}(\arcsin 1 - \arcsin(-1)) = \frac{1}{\pi}\left(\frac{\pi}{2} - \left(-\frac{\pi}{2}\right)\right) = 1. \]
Peluang untuk menemukan partikel pada interval $0 < x < A$ tentu saja adalah
\[ P_x(A) - P_x(0) = \int_0^A \frac{dP}{dx}dx = \frac{2}{T}(t_x(A) - t_x(0)) = \frac{1}{\pi}(\arcsin 1 - \arcsin 0) = \frac{1}{2}. \]
Peluang untuk menemukan partikel pada interval $0 < x < A/2$ tentu saja adalah
\[ P_x(A/2) - P_x(0) = \int_0^{A/2} \frac{dP}{dx}dx = \frac{2}{T}(t_x(A/2) - t_x(0)) = \frac{1}{\pi}(\arcsin(1/2) - \arcsin 0) = \frac{1}{6}. \]
Peluang untuk menemukan partikel pada interval $A/2 < x < A$ tentu saja adalah
\[ P_x(A) - P_x(A/2) = \int_{A/2}^A \frac{dP}{dx}dx = \frac{2}{T}(t_x(A) - t_x(A/2)) = \frac{1}{\pi}(\arcsin 1 - \arcsin(1/2)) = \frac{1}{\pi}\left(\frac{\pi}{2} - \frac{\pi}{6}\right) = \frac{1}{3}. \]
Demikianlah ini sesuai yang diharapkan bahwa $1/2 + 1/6 + 1/3 = 1$.

Komentar

Postingan populer dari blog ini

Fungsi Homogen Berderajat Sebarang

Diketahui ada kuantitas  $f:=\sum_{i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}x_{i_1}\cdots{x}_{i_n}$, sehingga \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{i_1,\dots,i_n}^r\sum_{k=1}^n{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}\delta_{ii_k}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}x_i{x}_{i_{k+1}}\cdots{x}_{i_n}. \] Karena ${M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}x_i=\sum_{i_k=1}^r\delta_{ii_k}{M}_{i_1\cdots{i}_{k-1}i_ki_{k+1}\cdots{i}_n}x_{i_k}$, maka \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_n}\delta_{ii_k}. \] Ka...

Sebuah Kulit Bola dalam Sistem Koordinat Kulit Bola

Sebuah kulit bola memiliki tempat kedudukan \[ S^2(\vec{r}_0, R) := \{\vec{r} \in \mathbb{R}^3 ~|~ |\vec{r} - \vec{r}_0| = R\} \] di mana $\vec{r}_0 \in \mathbb{R}^3$ adalah pusat kulit bola tersebut, dan $R \in \mathbb{R}^+$ adalah jari-jarinya. Tentu saja, \[ \vec{r} := r(\hat{x}\sin\theta\cos\phi + \hat{y}\sin\theta\sin\phi + \hat{z}\cos\theta) \] dan \[ \vec{r}_0 := r_0(\hat{x}\sin\theta_0\cos\phi_0 + \hat{y}\sin\theta_0\sin\phi_0 + \hat{z}\cos\theta_0) \] di mana $r, r_0 \in \mathbb{R}^+\cup\{0\}$, $\theta, \theta_0 \in [0, \pi]$, dan $\phi, \phi_0 \in \{0\}\cup(0, 2\pi)$, serta $\hat{x} := (1, 0, 0)$, $\hat{y} := (0, 1, 0)$, dan $\hat{z} := (0, 0, 1)$. Tentu saja, \[ \vec{r} - \vec{r}_0 = \hat{x}(r\sin\theta\cos\phi - r_0\sin\theta_0\cos\phi_0) \] \[ + \hat{y}(r\sin\theta\sin\phi - r_0\sin\theta_0\sin\phi_0) + \hat{z}(r\cos\theta - r_0\cos\theta_0) \] sehingga \[ |\vec{r} - \vec{r}_0|^2 = r^2\sin^2\theta\cos^2\phi + r_0^2\sin^2\theta_0\cos^2\phi_0 - 2r_0r\sin\theta_...

Menurunkan Hukum Arus Kirchhoff dari Hukum Ampere

Hukum arus Kirchhoff dapat diperoleh dari persamaan kontinyuitas yang diperoleh dari hukum Ampere. Hukum Ampere adalah \[ \nabla\times\vec{H} = \vec{J} + \partial\vec{D}/\partial t. \] Pengambilan divergensi pada kedua ruas persamaan terakhir menghasilkan \[ 0 = \nabla\cdot\vec{J} + \partial\rho/\partial t, \] di mana $\nabla\cdot\vec{D} = \rho$ merupakan hukum Gauss. Persamaan terakhir ini merupakan persamaan kontinyuitas untuk elektromagnetisme. Pengintegralan kedua ruas persamaan kontinyuitas tersebut ke seluruh volume $V$, dengan menerapkan teorema divergensi Gauss, menghasilkan \[ 0 = \oint_{\partial V}\vec{J}\cdot d^2\vec{r} + \frac{dq}{dt}, \] di mana $q = \int_V \rho d^3\vec{r}$ adalah muatan listrik pada $V$. Untuk volume $V$ yang mendekati titik matematis yang berupa simpul, maka $\oint_{\partial V}\vec{J}\cdot d^2\vec{r} = 0$.  Sementara itu $I := dq/dt = \sum_{j=1}^n I_j$ adalah total arus listrik yang melewati titik simpul tersebut, sehingga \[ \sum_{j=1...