Langsung ke konten utama

Postingan

Definisi dan Teorema Limit

Andaikan $f, g\,:\,\mathbb{R}\to\mathbb{R}$ dan $c, \delta, \epsilon \in \mathbb{R}$.  Definisi limit adalah \[ \lim_{x\to c}f(x) = L \] sedemikian rupa sehingga untuk setiap $\epsilon >0$, terdapat $\delta > 0$, sedemikian berlaku jika \[ 0 < |x - c| < \delta \] mengakibatkan \[ |f(x) - L| < \epsilon. \] Dari definisi ini, kita hendak mencari bentuk eksplisit dari nilai $L$. Kita dapat menuliskan \[ |x - c| = |r| \] di mana $0 < |r| < \delta$ alias $r \in (-\delta, 0)\cup(0, \delta)$, sehingga \[ x = c + r. \] Kita dapat menuliskan pula \[ |f(x) - L| = |R| \] di mana $0 \leq |R| < \epsilon$ alias $R \in (-\epsilon, \epsilon)$, sehingga \[ L = f(x) + R = f(c + r) + R. \] Contoh kongkretnya adalah \[ \lim_{x\to 0}x = (0 + r) + R. \] Kita ambil $R = -r$, sehingga \[ \lim_{x\to 0}x = r + (-r) = 0. \] Selain itu, \[ \lim_{x\to 0}\frac{x}{x} = \frac{0 + r}{0 + r} + R. \] Kita ambil $R = 0$, sehingga \[ \lim_{x\to 0}\frac{x}{x} = \frac{r}{r} =
Postingan terbaru

Sebuah Kulit Bola dalam Sistem Koordinat Kulit Bola

Sebuah kulit bola memiliki tempat kedudukan \[ S^2(\vec{r}_0, R) := \{\vec{r} \in \mathbb{R}^3 ~|~ |\vec{r} - \vec{r}_0| = R\} \] di mana $\vec{r}_0 \in \mathbb{R}^3$ adalah pusat kulit bola tersebut, dan $R \in \mathbb{R}^+$ adalah jari-jarinya. Tentu saja, \[ \vec{r} := r(\hat{x}\sin\theta\cos\phi + \hat{y}\sin\theta\sin\phi + \hat{z}\cos\theta) \] dan \[ \vec{r}_0 := r_0(\hat{x}\sin\theta_0\cos\phi_0 + \hat{y}\sin\theta_0\sin\phi_0 + \hat{z}\cos\theta_0) \] di mana $r, r_0 \in \mathbb{R}^+\cup\{0\}$, $\theta, \theta_0 \in [0, \pi]$, dan $\phi, \phi_0 \in \{0\}\cup(0, 2\pi)$, serta $\hat{x} := (1, 0, 0)$, $\hat{y} := (0, 1, 0)$, dan $\hat{z} := (0, 0, 1)$. Tentu saja, \[ \vec{r} - \vec{r}_0 = \hat{x}(r\sin\theta\cos\phi - r_0\sin\theta_0\cos\phi_0) \] \[ + \hat{y}(r\sin\theta\sin\phi - r_0\sin\theta_0\sin\phi_0) + \hat{z}(r\cos\theta - r_0\cos\theta_0) \] sehingga \[ |\vec{r} - \vec{r}_0|^2 = r^2\sin^2\theta\cos^2\phi + r_0^2\sin^2\theta_0\cos^2\phi_0 - 2r_0r\sin\theta_

Turunan Vektor Basis Satuan Azimutal terhadap Koordinat Azimutal

\[ \partial\hat{\phi}/\partial\phi = (\partial/\partial\phi)(\vec{e}_\phi/|\vec{e}_\phi|). \] \[ \vec{e}_\phi = \partial\vec{r}/\partial\phi. \] \[ \vec{r} = \hat{x}r\sin\theta\cos\phi + \hat{y}r\sin\theta\sin\phi + \hat{z}r\cos\theta. \] \[ \vec{e}_\phi = -\hat{x}r\sin\theta\sin\phi + \hat{y}r\sin\theta\cos\phi. \] \[ |\vec{e}_\phi| = r\sin\theta. \] \[ \hat{\phi} = \vec{e}_\phi/|\vec{e}_\phi| = -\hat{x}\sin\phi + \hat{y}\cos\phi. \] \[ \partial\hat{\phi}/\partial\phi = -(\hat{x}\cos\phi + \hat{y}\sin\phi). \] \[ \hat{r} = \hat{x}\sin\theta\cos\phi + \hat{y}\sin\theta\sin\phi + \hat{z}\cos\theta. \] \[ \hat{\theta} =  \vec{e}_\theta/|\vec{e}_\theta|. \] \[ \vec{e}_\theta = \partial\vec{r}/\partial\theta = \hat{x}r\cos\theta\cos\phi + \hat{y}r\cos\theta\sin\phi - \hat{z}r\sin\theta. \] \[ |\vec{e}_\theta| = r. \] \[ \hat{\theta} = \hat{x}\cos\theta\cos\phi + \hat{y}\cos\theta\sin\phi - \hat{z}\sin\theta. \] \[ \begin{pmatrix}\hat{r} \\ \hat{\theta} \\ \hat{\phi}\end{pmatrix

Menurunkan Hukum Arus Kirchhoff dari Hukum Ampere

Hukum arus Kirchhoff dapat diperoleh dari persamaan kontinyuitas yang diperoleh dari hukum Ampere. Hukum Ampere adalah \[ \nabla\times\vec{H} = \vec{J} + \partial\vec{D}/\partial t. \] Pengambilan divergensi pada kedua ruas persamaan terakhir menghasilkan \[ 0 = \nabla\cdot\vec{J} + \partial\rho/\partial t, \] di mana $\nabla\cdot\vec{D} = \rho$ merupakan hukum Gauss. Persamaan terakhir ini merupakan persamaan kontinyuitas untuk elektromagnetisme. Pengintegralan kedua ruas persamaan kontinyuitas tersebut ke seluruh volume $V$, dengan menerapkan teorema divergensi Gauss, menghasilkan \[ 0 = \oint_{\partial V}\vec{J}\cdot d^2\vec{r} + \frac{dq}{dt}, \] di mana $q = \int_V \rho d^3\vec{r}$ adalah muatan listrik pada $V$. Untuk volume $V$ yang mendekati titik matematis yang berupa simpul, maka $\oint_{\partial V}\vec{J}\cdot d^2\vec{r} = 0$.  Sementara itu $I := dq/dt = \sum_{j=1}^n I_j$ adalah total arus listrik yang melewati titik simpul tersebut, sehingga \[ \sum_{j=1}^n

Turunan Waktu Vektor Posisi yang Berotasi

Misalkan di ruang $\mathbb{R}^3$ ada vektor sudut rotasi $\vec{\theta} := \theta\hat{n}$ yang berpangkal di titik $\vec{0}$, di mana $\theta$ merupakan sudut rotasi yang bergantung pada waktu $t$, serta $\hat{n}$ merupakan vektor satuan arah orientasi rotasi yang konstan terhadap $t$.  Vektor posisi mula-mula $\vec{r}_0$ yang berotasi oleh $\vec{\theta}$ tersebut pada waktu $t$ akan berpindah ke posisi \[ \vec{r} = (\hat{n}\cdot\vec{r}_0)\hat{n} + (\hat{n}\times\vec{r}_0)\times\hat{n}\cos\theta + \hat{n}\times\vec{r}_0\sin\theta. \] Turunan $\vec{r}$ terhadap $t$ tentu saja adalah \[ \vec{v} := \frac{d\vec{r}}{dt} = -(\hat{n}\times\vec{r}_0)\times\hat{n}\frac{d\theta}{dt}\sin\theta + \hat{n}\times\vec{r}_0\frac{d\theta}{dt}\cos\theta, \] sehingga \[ \vec{v} = \vec{\omega}\times(\hat{n}\times\vec{r}_0\sin\theta + \vec{r}_0\cos\theta), \] di mana $\vec{\omega} := d\vec{\theta}/dt$. Karena $(\hat{n}\times\vec{r}_0)\times\hat{n} = \vec{r}_0 - (\hat{n}\cdot\vec{r}_0)\hat{n}$ dan $\v

Fungsi Homogen Berderajat Sebarang

Diketahui ada kuantitas  $f:=\sum_{i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}x_{i_1}\cdots{x}_{i_n}$, sehingga \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{i_1,\dots,i_n}^r\sum_{k=1}^n{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}\delta_{ii_k}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}{x}_{i_{k+1}}\cdots{x}_{i_n}, \] \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_{k-1},i_{k+1},\dots,i_n=1}^r{M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_{k-1}}x_i{x}_{i_{k+1}}\cdots{x}_{i_n}. \] Karena ${M}_{i_1\cdots{i}_{k-1}ii_{k+1}\cdots{i}_n}x_i=\sum_{i_k=1}^r\delta_{ii_k}{M}_{i_1\cdots{i}_{k-1}i_ki_{k+1}\cdots{i}_n}x_{i_k}$, maka \[ \sum_{i=1}^r{x_i}\frac{\partial{f}}{\partial{x_i}}=\sum_{k=1}^n\sum_{i,i_1,\dots,i_n=1}^r{M}_{i_1\cdots{i}_n}{x}_{i_1}\cdots{x}_{i_n}\delta_{ii_k}. \] Karena

Persamaan Hamilton

Andaikan ada sebuah Lagrangian $L \mapsto (q, \dot{q}, t)$, di mana $q$ adalah satu-satunya koordinat umum, $t$ adalah waktu, dan $\dot{q} := dq/dt$, serta $q \mapsto t$ dan $\dot{q} \mapsto t$.  Andaikan ada sebuah momentum umum $p$ yang didefinisikan sebagai \[ p := \left(\frac{\partial L}{\partial\dot{q}}\right)_{q,t}. \] Tentu saja, $p \mapsto (q, \dot{q}, t)$, sehingga tentu saja $\dot{q} \mapsto (q, p, t)$. Karena $L$ memenuhi persamaan Euler-Lagrange, yaitu \[ \frac{d}{dt}\left(\frac{\partial L}{\partial\dot{q}}\right)_{q,t} = \left(\frac{\partial L}{\partial q}\right)_{\dot{q},t}, \] maka \[ \dot{p} = \left(\frac{\partial L}{\partial q}\right)_{\dot{q},t}. \] Tentu saja, $\dot{p} \mapsto (q, \dot{q}, t)$. Andaikan ada sebuah Hamiltonian $H \mapsto (q, p, t)$, yang didefinisikan sebagai $H := \dot{q}p - L$. Karena $L = L_{q, \dot{q}, t}(q, \dot{q}_{q,p,t}(q, p, t), t)$, maka \[ \left(\frac{\partial H}{\partial q}\right)_{p, t} = \left(\frac{\partial\dot{q}}{\partial